DATASET

本州域d4PDFダウンスケーリングデータ

データセット概要

地球温暖化対策に資するアンサンブル気候予測データベースd4PDF領域実験の20km格子データを5km格子にダウンスケーリングしたものである。東北から九州に至る領域をカバーし、現在気候、産業革命時から全球2℃上昇、4℃上昇時の気候予測データからなる。

モデル名

  • 気象研究所非静力学地域気候モデルNHRCM (Sasaki et al. 2008)

実験構成

実験名 内容
HPB_mNNN 20世紀末実験
HFB_2K_XX_mNNN 産業革命前に比べて全球平均気温が2℃上昇した条件
HFB_4K_XX_mNNN 産業革命前に比べて全球平均気温が4℃上昇した条件

NNN: アンサンブル番号、XX: 海面水温変化パターン(CC,GF,HA,MI,MP,MR)

水平空間解像度

5km

バイアス補正

なし

本データの引用

  • Sasai, T., H. Kawase, Y. Kanno, J. Yamaguchi, S. Sugimoto, T. Yamazaki, H. Sasaki, M. Fujita, and T. Iwasaki, 2019: Future projection in extreme heavy snowfall events with a 5-km large ensemble regional climate Simulation. J. Geophys. Res., 124, 13,975-13,990, doi:10.1029/2019JD030781.
  • 山崎剛,佐々井崇博,川瀬宏明,杉本志織,大楽浩司,伊東瑠衣,佐々木秀孝,藤田実季子, 2019: 5km 力学的ダウンスケーリングデータセット(SI-CAT DDS5TK)の概要.シミュレーション, 38(3), 145-149.

備考

類似のデータについて

 気候予測データセット2022には、d4PDFから5km解像度に力学的ダウンスケーリングしたデータが3種類存在する。
 「⑥北海道域 d4PDF ダウンスケーリングデータ」は、「⑤全球及び日本域確率的気候予測データ(d4PDF シリーズ)」の 日本域20km解像度データに含まれる十勝川帯広基準地点上流域の流域平均72時間雨量が、年最大となる降雨イベントを 含む15日間を5km解像度にダウンスケーリングしたものである。 20km解像度で表現される豪雨事例(天気図スケールで表現される気象場)を含む15日間について、 高解像度にダウンスケーリングした膨大な数のアンサンブルデータ (気候予測データセット2022解説書のデータセットの概要を参照)が 使用可能であることから、当該流域の降雨量の統計的評価、洪水リスク評価、適応策の検討への応用など、 今後も様々な利用が考えられる。
 「⑦本州域 d4PDF ダウンスケーリングデータ」と「⑯全国版d4PDFダウンスケーリングデータ」は、 通年を対象として日本付近で5kmダウンスケーリングを行っているなど共通点の多いデータである。 ただし、「⑦本州域 d4PDF ダウンスケーリングデータ」は計算領域が東北から九州限定であり、日本全国を対象とした評価には利用できない。 また、山岳域の雪の過大評価に注意する必要がある。 一方で、これまで当該データを利用していた場合をはじめ、ダウンスケーリング元の「⑤全球及び日本域確率的気候予測データ(d4PDF シリーズ)」の 日本域20km解像度データや、その他「⑦本州域 d4PDF ダウンスケーリングデータ」から派生したデータとの整合を重視する等の場合に、 引き続き活用可能なデータである。 中部山岳域、北信越、東北南部の3地域について1kmの解像度へダウンスケーリングした結果が含まれる唯一のデータでもある。
 「⑯全国版d4PDFダウンスケーリングデータ」は、北海道から沖縄まで日本全国を統一した実験設定で評価する等の場合に有用なデータである。 また、「⑦本州域 d4PDF ダウンスケーリングデータ」の作成時に存在していたいくつかの問題(上述の山岳域の雪の問題など。 気候予測データセット2022解説書の留意事項等を参照)を修正しており、 今後、新規で解析する場合は、「⑯全国版d4PDFダウンスケーリングデータ」の使用を推奨する。

データセット一覧へ戻る