研究課題名「未来型の都市浸水予測システム」

令和6年度

渋尾欣弘 高知大学理工学部地球環境防災学科 shibuo@kochi-u.ac.jp

高知県の気象

四国山地と太平洋に挟まれた高知県は県の9割が中山間地域であり、高知平野 や香長平野をはじめとする平地や海岸沿いに人口が集中している(図1)。 海洋においては東シナ海を北上してくる暖流の黒潮があり、上空を通過する 暖かく湿った気流が山間部へ流れ込む(図2)。

これらの地理特性があわさり、高知県は全国有数の多雨地帯となっている。 豪雨の要因に台風、低気圧、梅雨前線等があり、特に台風の影響が大きい。

ゼロメートル地帯が存在(図5)。

過去の水災害

図1 高知市周辺

高知市中心部を流れる鏡川(流域面積170km²,幹線延長 31.1km)と国分川(流域面積152.8km²,幹線延長21.1 km)は水位周知河川であり、洪水予報の義務はない。 他方、県下最大の人口を抱える市中心部は海水面低下 による陸地に氾濫平野が重なり、約7km²にわたり海抜

そのため洪水や高潮に対するリスクが高い。過去発生 した顕著な洪水災害に、98年高知豪雨(秋雨前線への 暖湿気流入)があり、高知市で1時間112mm、日降水量 628.5mmを観測。国分川下流域の低地を中心に甚大な

図2 暖湿気の流入による雪の発達(気象庁)

図7 MSM-GPVによる洪水予測

(Shibuo et al. 2016)

物部川

県全域で年間降水量が多く、県南部海岸沿い(流 域下流部)において2600mm、山間部では3000mmを 超える地域もある(図3)。

DIAS 研究成果報告会

地理的要因から河床勾配の急な河川が多く、比流 量が大きい傾向にある。さらには多雨と急峻な地 形が相まり、1972年の繁藤災害(図4)等、土砂 災害の発生しやすい条件が揃う。

図4 繁藤災害では24時間で742mmを記録(香美市)

図6国分川下流部の浸水、上:冠水時、下:復旧時(高知県警察)

	表1 解析対象として抽出した気象擾乱					
1	年月日	イベント	年月日	イベント		
	2018年4月24日	前線を伴った低気圧による大雨	2019年9月22日	台風第13号と前線による大雨		
	2018年6月20日	梅雨前線と低気圧による大雨	2019年10月2日~10月3 日	台風第18号による大雨		
	2018年6月29日	平成30年7月豪雨	2020年6月30日	梅雨前線と低気圧による大雨		
	2018年7月3日~7月8日	平成30年7月豪雨	2020年7月4日	梅雨前線による大雨		
	2018年7月29日	台風第12号による大雨	2020年7月24日~7月25 日	低気圧による大雨		
	2018年8月15日	低気圧と台風第15号による大雨	2021年7月18日	湿った空気による大雨		
	2018年8月23日	台風第19号と台風第20号による大 雨	2021年8月19日~8月22 日	低気圧と前線と台風第12号による大雨		
	2018年9月30日	台風第24号と前線による大雨	2021年9月17日	台風第14号による大雨		
	2019年5月20日	寒冷前線による大雨	2022年7月4日~7月5日	台風第4号による大雨		
١,	2019年6月14日	低気圧による大雨	2022年9月4日~9月6日	台風第11号による大雨		
	2019年6月27日	低気圧による大雨	2022年9月18日~9月19 日	台風第14号による大雨		
	2019年7月3日~7月11 日	低気圧による大雨	2023年6月2日	台風第2号と梅雨前線と線状降水帯によ る大雨		
	2019年7月18日~7月21 日	台風第5号と前線による大雨	2023年8月7日~8月10日	台風第6号による大雨		
	2019年8月14日~8月15 日	台風第8号による大雨	2023年8月17日	低気圧による大雨		
	2019年9月7日	台風第10号による大雨				

既往研究・目的

被害が発生した(図6)。

洪水発生の外力は低気圧や台風等の 兆候としてあらわれるため、MSM-GPV 等の数値気象予測値を活用して予測 できる可能性がある (Shibuo et al., 2016等)。一方、多雨地帯であ る高知県においては、洪水予測の観 点からMSM-GPVの精度評価は不十分で ある。

本研究では、流域面積と気象擾乱の種類による降水予測の精度に着 目し、流域面積の広い四万十川から中小河川(図8)において発生 した時空間スケールの異なる気象擾乱を抽出(表1)、それらを相 対誤差、平均二乗誤差(RMSE)等により評価。それらから、高知の 流域を対象としたMSM-GPVによる洪水予測の可能性を検討する。

結果・まとめ

図9 MSM-GPVと解析雨量24時間累積値比較:a)国分川(201910集中豪雨),b)国分川(201807停滞前線), c)四万十川(201907集中豪雨), d)四万十川(201908台風)

表2 降雨ピーク時における予測誤差

流域	擾乱	年月	RMSE
分川	集中豪雨	201910	24.19
分川	停滞前線	201807	10.17
分川	停滞前線	202006	19.19
分川	台風	201910	24.19
分川	温帯低気圧	201804	2.81
淀川	停滞前線	201905	5.63
淀川	台風	201808	1.81
淀川	温帯低気圧	202108	5.17
万十川	集中豪雨	201907	8. 72
万十川	台風	202209	3. 71
万十川	台風	201908	1, 21

累積降雨では流域面積の広い四万十川、 仁淀川において精度が高い傾向が見られ、 国分川において精度は低い傾向(図9)。 気象擾乱について比較すると、時空間ス ケールの大きい台風や低気圧において誤 差低くなる一方、集中豪雨など局所的に ごく短時間で発生する降水量では誤差が 高い傾向(表2)。

<u>まとめ</u>

- MSM-GPVを外力とする洪水予測、高知を対象に 流域規模における降水の予測精度を評価
- 時空間スケールの大きい擾乱が広い流域にも たらす洪水については予測しうるが、小規模 ではそれが難しいことを示唆
- 四万十川と仁淀川については、台風や低気圧 に伴う出水はMSM-GPVのみでも予測しうる可能 性
- 鏡川と国分川(いずれも中小河川)、さらに 対象面積の小さい都市排水区に対してはMSM-GPVを用いた出水予測は困難か。特に集中豪雨 や前線に伴う洪水
- レーダー観測雨量、現地観測を用いたデータ 同化等、他技術との併用が必要
- 更なる分析を進め、本仮説を検証する

Shibuo, Y. Evaluation of Precipitation Forecasts by Numerical Weather Prediction for Potential Use in Urban Flood Forecasting: A Case Study in Japan, 16th International Conference on Urban Drainage, Delft, June 11 2024.

図5 デジタル標高地形図「四国」(国土地理院)

図8 対象流域:四万十川、仁淀川、鏡川、国分川