4:通常の解像度のモデルでは、個々の対流雲の内部運動を再現できないために、集団としての対流雲の効果を表現する「対流パラメタリゼーション」が採用される。
古典的なものとして荒川・シューバートスキーム(Arakawa and Schubert, 1974)がある。
これは統計力学の考え方を応用して雲群の活動をマクロに評価したものである。
その後、様々なスキームが登場した。カイン・フリッツスキーム(Kain and Fritsch, 1990)もその1つで、解像度の比較的高いモデルによく用いられている。
データセット2022のd4PDFをもとにした影響評価は、広い分野、特に時間単位の解像度の物理情報を必要とする極端水害の分野で活用されている。
とりわけ豪雨や台風は、東アジア及び北西太平洋における主要な自然災害であるため、
タイムスライス実験やd4PDFを用いた様々な研究展開が図られている(Mori and Takemi, 2016; Mori et al., 2021b)。
d4PDFは、これまで行われてきた20~30年程度のタイムスライス実験と比べて、一般的な防災・減災インフラ整備の基本情報である数百年に一度発生する豪雨、
洪水、高潮などの極端ハザードの長期評価指標である1年間に1/Nの確率で発生する再現期間N年値を直接推定可能とした点に大きな特徴がある。
以下では、代表的な風水害についての研究成果を中心に、データセット2022の主な利用例を紹介する。より詳しい内容については、
いくつかのレビュー論文(例えば、Ishii and Mori(2021)、石井と森(2022))を参照されたい。
Fukui, S. and A. Murata, 2021:
Sensitivity to horizontal resolution of regional climate model in simulated precipitation over Kyushu in Baiu season.
SOLA, 17, 207–212. https://doi.org/10.2151/sola.2021-036
Houze, R. A. Jr., 2014: Cloud Dynamics, 2nd Ed. Academic Press, 432pp.
Iizumi, T., Y. Masutomi, T. Takimoto, T. Hirota, A. Yatagai, K. Tatsumi, K. Kobayashi and T. Hasegawa, 2018a:
Emerging research topics in agricultural meteorology and assessment of climate change adaptation.
J. Agric. Meteor., 74, 54–59.
https://doi.org/10.2480/agrmet.D-17-00021
Iizumi, T., H. Shiogama, Y. Imada, N. Hanasaki, H. Takikawa and M. Nishimori, 2018b:
Crop production losses associated with anthropogenic climate change for 1981–2010 compared with preindustrial levels.
Int. J. Climatol., 38, 5405–5417. https://doi.org/10.1002/joc.5818
IPCC, 2012:
Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation.
A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change.
[Field, C. B., V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea,
K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor and P. M. Midgley, (eds.)],
Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582pp.
Ishizaki, N. N., M. Nishimori, T. Iizumi, H. Shiogama, N. Hanasaki and K. Takahashi, 2020:
Evaluation of two bias-correction methods for gridded climate scenarios over Japan. SOLA, 16, 80–85.
https://doi.org/10.2151/sola.2020-014
Ito, R., T. Nakaegawa and I. Takayabu, 2020a:
Comparison of regional characteristics of land precipitation climatology projected by an MRI-AGCM multi-cumulus scheme and
multi-SST ensemble with CMIP5 multi-model ensemble projections.
Prog. Earth Planet. Sci., 7,
doi:10.1186/s40645-020-00394-4.
https://progearthplanetsci.springeropen.com/articles/10.1186/s40645-020-00394-4
Ito, R., T. Ose, H. Endo, R. Mizuta, K. Yoshida, A. Kitoh and T. Nakaegawa, 2020b:
Seasonal characteristics of future climate change over Japan and the associated
atmospheric circulation anomalies in global model experiments.
Hydrol. Res. Lett., 14, 130–135. https://doi.org/10.3178/hrl.14.130
Kato, T., 2020:
Quasi-stationary band-shaped precipitation systems, named “senjo-kousuitai”, causing localized heavy rainfall in Japan.
J. Meteor. Soc. Japan, 98, 485–509. https://doi.org/10.2151/jmsj.2020-029
Kim, K.-M., S. Ito, S. Yoshida and S. Sadohara, 2019:
Analysis of influence of climate change on demand and system of heating and cooling predicted by d4PDF:
A case of Minatomirai 21 DHC Area in Yokohama.
J. Environ. Eng., AIJ, 84, 83–91. https://doi.org/10.3130/aije.84.83
Mizuta, R., M. Nosaka, T. Nakaegawa, H. Endo, S. Kusunoki, A. Murata and I. Takayabu, 2022:
Extreme precipitation in 150-year continuous simulations by 20-km and 60-km atmospheric general circulation models with
dynamical downscaling over Japan by a 20-km regional climate model.
J. Meteor. Soc. Japan, 100, 523–532. https://doi.org/10.2151/jmsj.2022-026
Mori, N., N. Ariyoshi, T. Shimura, T. Miyashita and J. Ninomiya, 2021a:
Future projection of maximum potential storm surge height at three major bays in Japan
using the maximum potential intensity of a tropical cyclone.
Climatic Change, 164, doi:10.1007/s10584-021-02980-x. https://link.springer.com/article/10.1007/s10584-021-02980-x
Mori, N. and T. Takemi, 2016:
Impact assessment of coastal hazards due to future changes of tropical cyclones in the North Pacific Ocean.
Wea. Clim. Extremes, 11, 53–69. https://doi.org/10.1016/j.wace.2015.09.002
Mori, N., T. Takemi, Y. Tachikawa, H. Tatano, T. Shimura, T. Tanaka, T. Fujimi, Y. Osakada, A. Webb and E. Nakakita, 2021b:
Recent nationwide climate change impact assessments of natural hazards in Japan and East Asia (review),
Wea. Clim. Extremes, 32, 100309, doi:10.1016/j.wace.2021.100309. https://www.sciencedirect.com/science/article/pii/S2212094721000074
Morim, J., M. Hemer, X. L. Wang, N. Cartwright, C. Trenham, A. Semedo, I. Young,
L. Bricheno, P. Camus, M. Casas-Prat, L. Erikson, L. Mentaschi, N. Mori, T. Shimura,
B. Timmermans, O. Aarnes, Ø. Breivik, A. Behrens, M. Dobrynin, M. Menendez, J. Staneva,
M. Wehner, J. Wolf, B. Kamranzad, A. Webb, J. Stopa, F. Andutta, 2019:
Robustness and uncertainties in global multivariate wind-wave climate projections,
Nat. Clim. Change, 9, 711-718.
https://doi.org/10.1038/s41558-019-0542-5
Ninomiya, J., Y. Taka and N. Mori, 2021:
Projecting changes in explosive cyclones and high waves around Japan using a mega-ensemble projection.
Ocean Eng., 237, 109634, doi:10.1016/j.oceaneng.2021.109634. https://www.sciencedirect.com/science/article/pii/S002980182101012X
Ose, T., H. Endo, Y. Takaya, S. Maeda and T. Nakaegawa, 2022:
Robust and uncertain sea-level pressure patterns over summertime East Asia in the CMIP6 multi-model future projections.
J. Meteor. Soc. Japan., 100, 631–645. https://doi.org/10.2151/jmsj.2022-032
Prein, A. F., R. M. Rasmussen, D. Wang and S. E. Giangrande, 2021:
Sensitivity of organized convective storms to model grid spacing in current and future climates.
Phil. Trans. R. Soc. A, 379: 20190546. https://doi.org/10.1098/rsta.2019.0546
Shimura, T., N. Mori and M. A. Hemer, 2017:
Projection of tropical cyclone-generated extreme wave climate based on CMIP5 multi-model ensemble in the Western North Pacific.
Clim. Dyn., 49, 1449–1462.
https://doi.org/10.1007/s00382-016-3390-2
Shiogama, H., N. N. Ishizaki, N. Hanasaki, K. Takahashi, S. Emori, R. Ito,
T. Nakaegawa, I. Takayabu, Y. Hijioka, Y. N. Takayabu and R. Shibuya, 2021:
Selecting CMIP6-based future climate scenarios for impact and adaptation studies.
SOLA, 17, 57–62. https://doi.org/10.2151/sola.2021-009
Tanaka, T., Y. Tachikawa, Y. Ichikawa and K. Yorozu, 2018:
Flood risk curve development with probabilistic rainfall modelling and large ensemble climate simulation data:
a case study for the Yodo River basin.
Hydrol. Res. Lett., 12, 28–33. https://doi.org/10.3178/hrl.12.28
Tokarska, K. B., M. B. Stolpe, S. Sippel, E. M. Fischer, C. J. Smith, F. Lehner and R. Knutti, 2020:
Past warming trend constrains future warming in CMIP6 models.
Sci. Adv., 6, doi:10.1126/sciadv.aaz9549. https://www.science.org/doi/10.1126/sciadv.aaz9549
Watanabe, S., M. Yamada, S. Abe, and M. Hatono, 2020:
Bias correction of d4PDF using a moving window method and their uncertainty analysis in estimation and projection of design rainfall depth.
Hydrol. Res. Lett., 14, 117–122. https://doi.org/10.3178/hrl.14.117
Webb, A., T. Shimura and N. Mori, 2019:
Global tropical cyclone track detection and analysis of the d4PDF mega-ensemble projection.
J. Jpn. Soc. Civ. Eng., Ser. B2 (Coast. Eng.), 75, I_1207–I_1212. https://doi.org/10.2208/kaigan.75.i_1207